Professor Siddharth Parameswaran
Tutorial Fellow in Physics & Fellow for Research
Professor of Physics
Sid graduated from the University of Rochester, USA with a BS in Physics and a BA in Mathematics in 2006. He then moved to Princeton University where he received a PhD in theoretical physics in 2011. He spent three years (2011-14) at the University of California, Berkeley, as a Simons Postdoctoral Fellow in physics, before establishing an independent research group at the University of California, Irvine, where he was an Assistant Professor from 2014-2017. During this time, he received a US National Science Foundation CAREER award.
Sid was appointed as an Associate Professor in Quantum Condensed Matter Theory and a Tutorial Fellow in Physics at Hertford College in 2017, and received a European Research Council Starting Grant in 2018 to support his research into topological phases of quantum matter, for which he received a Frontiers in Science Award at the International Congress of Basic Sciences, 2023. He was awarded the title of Professor of Physics in 2023.
Undergraduate teaching
At Hertford, Sid tutors students across a variety of topics in the first three years of the four-year MPhys course (the fourth, more specialised year, is taught centrally). Subjects he has tutored include linear algebra in the first year, mathematical methods, quantum mechanics, electromagnetism, and thermal and statistical physics in the second year, and third-year courses on general relativity, atomic physics, and condensed matter. On occasion he also runs small seminars and reading groups for Hertford students on special topics for students interested in delving beyond the curriculum — for instance, in Hilary term 2020 he led a course on quantum information and computation. Sid also serves as the organising tutor for physics, with overall responsibility for directing physics teaching at Hertford.
In the physics department, Sid lectures on both the MPhys and MMathPhys courses. He is currently delivering around half of the second-year quantum mechanics lectures. In the past, he has given a series of lectures on Quantum Field Theory in Condensed Matter as part of the MMathPhys course, and taught half of the MPhys fourth-year option in Theoretical Physics, part of which overlaps with the MMathPhys lecture course on “Advanced Quantum Theory”.
Graduate teaching and Research Supervision
Sid typically supervises 2-4 graduate students and several post-doctoral research assistants (the latter typically jointly with the Oxford condensed matter theory group). Several DPhil students from the physics, chemistry, and materials departments also attend his lectures in the theoretical physics option.
-
Research interests
Sid is a theoretical physicist, whose work focuses on on quantum mechanical systems of many particles that are strongly interacting, far from equilibrium, or both.
Systems of interacting particles can display a variety of emergent cooperative phenomena that cannot be understood from their microscopic details. Usually, the study of this type of “condensed matter” builds on two key principles, namely (i) that most situations can be understood by approximately treating the constituents (such as electrons, atoms, or molecules) as weakly interacting; and (ii) that the assumption of thermal equilibrium provides a powerful way to capture the properties of complex systems using simple statistical tools.
Sid is interested in what happens when quantum systems are so strongly interacting, or so dramatically disturbed from equilibrium, that these guiding principles break down. A new set of ideas is therefore required to fully understand the behavior of such systems, and to explore their properties. Besides their great fundamental interest, many of the new phenomena displayed in these extreme regimes could have many important applications — particularly if new theoretical insights allow them to be reproduced in more conventional situations. Insights into weakly-correlated, equilibrium systems fueled the technological revolution of the second half of the twentieth century; what new and unexpected benefits might we accrue from understanding their more complex cousins? The exciting possibilities range from low-power electronics to revolutionary new technologies such as quantum computers.
-
Related websites
-
Publications
To find out more about Sid’s publications, please see his personal website.